Изменение скоростей термоядерных реакций в плазме с ионными корреляциями. Технические и астрофизические следствия

<u>А. Л. Фальков</u>, А. А. Овечкин, В. А. Лыков, П. Е. Кискин, Д. А. Варфоломеев, Н. М. Жданова Научно-теоретические отделения №1 и 2

Федеральное государственное унитарное предприятие Российский федеральный ядерный центр — Всероссийский НИИ технической физики имени академика Е. И. Забабахина

Корреляционные поправки к скоростям ТЯ-реакций

- В институте существует основанная на модели Старретта и Саумона [1] методика расчёта статических и динамических свойств неидеальной плазмы с несколькими сортами ионов [2]. В ионной подсистеме такой плазмы подразумевается «жидкостное» ближнее упорядочивание [3].
- Подходы к оценке поправок для скоростей ТЯ-реакций [4–6] не позволяют построить промежуточную асимптотику между случаями слабой и сильной неидеальности, тогда как расчёты [1,2] могут проводиться при

$10^{-1} \leqslant \langle \Gamma_{II} \rangle \leqslant 10^3$.

Переосмысление эксперимента:

Сложности в интерпретации данных экспериментов по газодинамическому термоядерному синтезу (ГДТС) [7,8] с двухслойным ядром UH₃/UD₃: в ряде опытов экспериментально зафиксированный нейтронный выход превысил расчётные оценки разработчиков в 400 раз.

Астрофизика:

 Возможность уточнения моделей эволюции звёзд на начальной стадии эволюции вне главной последовательности (протозвёздные объекты, красные сверхгиганты и др.).

Корреляционные эффекты («на понятийном уровне») Попытка эффективного учёта трёхчастичных взаимодействий

Однотипные ионы:

Несколько сортов ионов:

Корреляционная поправка R_{ij} к скорости ТЯ-реакции Вывод формулы А. А. Овечкина на основании модели Старретта и Саумона для смесей

 $R_{ij} = \lim_{r \to 0} \frac{g_{ij}(r)}{g_{ij}^{(\mu_{3OD.})}(r)}; \quad g_{ij}^{(\mu_{3OD.})}(r) = \exp\left(-\frac{-Z_{\star i}Z_{\star j}}{rT}\right), \tag{1}$

$$g_{ij}(r) = \exp\left(-\frac{V_{ij}(r)}{T} + h(r) - c(r) + E(r)\right), \quad E(r) \equiv 0, \quad (2)$$

$$R_{ij} = \lim_{r \to 0} \exp\left[H_{ij}(r)\right], \quad H_{ij}(r) = -\frac{1}{T} \left[V_{ij}(r) - \frac{Z_{\star i} Z_{\star j}}{r}\right] + h_{ij}(r) - c_{ij}(r).$$
(3)

$$h_{ij}(r) = c_{ij}(r) + \sum_{k=1}^{N_m} n_k^{(0)} \int_{V_{\infty}} d\mathbf{r}' h_{ik} \left(\left| \mathbf{r} - \mathbf{r}' \right| \right) c_{kj} \left(r' \right), \tag{4}$$

$$V_{ij}(r) = \frac{Z_{\star i} Z_{\star j}}{r} - T \int_{V_{\infty}} d\mathbf{r}' C_{le,i} \left(\left| \mathbf{r} - \mathbf{r}' \right| \right) n_{e,j}^{\text{scr}} \left(r' \right),$$
(5)

$$H_{ij}(0) = 4\pi \int_{0}^{+\infty} drr^{2} \left(C_{le,i}(r) n_{e,j}^{\rm scr}(r) + \sum_{k=1}^{N_{m}} n_{k}^{(0)} h_{ik}(r) c_{kj}(r) \right)$$

Корреляционная поправка R_{ij} к скорости ТЯ-реакции

$$H_{ij}(0) = 4\pi \int_{0}^{+\infty} dr r^2 \left(C_{le,i}(r) n_{e,j}^{\rm scr}(r) + \sum_{k=1}^{N_m} n_k^{(0)} h_{ik}(r) c_{kj}(r) \right), \qquad \text{где} \qquad (6)$$

- С_{Ie,i}(r) прямая ион-электронная корреляционная функция,
- n^{scr}_{e,j}(r) экранирующая электронная плотность,
- *N_m* число различных сортов ионов в плазме;
- ▶ n_k⁽⁰⁾ парциальная концентрация k-ого компонента смеси ионов,
- *c_{ij}(r)* и *h_{ij}(r)* прямая и полная парные корреляционные функции ионов сортов «i» и «j» соответственно.

Формула (6) удобна для выполнения количественных оценок в широком диапазоне неидеальности плазмы, поскольку все необходимые зависимости могут быть найдены непосредственно при численном решении уравнений модели Старретта и Саумона [1] для смесевой плазмы по программе ELEGIA [2].

Поиск вспомогательных величин

Экранирующая электронная плотность в модели Старретта и Саумона

$$Z = \int_{V_{\infty}} d\mathbf{r} n_e^{\text{PA}}(r), \quad n_e^{\text{PA}}(r) = n_{e,b}(r) + n_e^{\text{scr}}(r),$$
(7)

где Z — заряд ядра, а n_e^{PA} — плотность электронов псевдоатома. Экранирующая электронная плотность $n_{a}^{\rm scr}(r)$:

$$n_e^{\rm scr}(r) = n_e(r) - n_{e,f}^{\rm ext}(r) - n_{e,b}(r), \quad C_{le}\left(k, \overline{n_e^0}\right) = -\beta n_e^{\rm scr}(k)/\chi_e(k).$$
(8)

где $n_e(r)$ — суммарная электронная плотность в полной модели среднего атома, $n_{e,f}^{\text{ext}}(r)$ — плотность электронов в системе без ядра ($Z\equiv 0$), $n_{e,b}(r)$ — плотность связанных состояний электронов:

$$n_{e,b}(r) = \frac{\sqrt{2}}{\pi^2 \beta^{3/2}} \left\{ I_{1/2} \left[\beta \left(\mu_e - V_{Ne}^{\text{eff}}(r) \right) \right] - J_{1/2} \left[\beta \left(\mu_e - V_{Ne}^{\text{eff}}(r) \right), -\beta V_{Ne}^{\text{eff}}(r) \right] \right\} f_{\text{cut}}(r).$$

$$(9)$$

Для поиска электронных плотностей $n_e(r)$, $n_e^{\text{ext}}(r)$ и $n_{e,b}(r)$ необходимо дважды численно решить систему уравнений Пуассона. ・ロト (雪) (目) (目) (日) (日)

6

Поиск вспомогательных величин Электронные распределения и потенциалы в модели Старретта и Саумона

$$I. \begin{cases} n_{e}(r) = \frac{\sqrt{2}}{\pi^{2}\beta^{3/2}} I_{1/2} \left(\beta \left(\mu_{e} - V_{Ne}^{\text{eff}}(r)\right)\right) + \delta n_{e}(r), & \beta = 1/T, \\ V_{Ne}^{\text{eff}}(r) = -\frac{Z}{r} + \int d\mathbf{r}' \frac{n_{e}(r') - \langle Z \rangle n_{l}^{0} \overline{g_{ll}(r)} (r')}{|\mathbf{r} - \mathbf{r}'|} - \\ -\frac{\sqrt[3]{3n_{e}(r)}}{\pi} + \sqrt[3]{\frac{3n_{e}^{0}}{\pi}} + V_{le}^{e,c} [n_{l}(r)] + V_{q}(r). \\ \langle Z \rangle = n_{e}^{0} / n_{l}^{0} = \sqrt{2} I_{1/2} (\beta \mu_{e}) / \left(n_{l}^{0} \pi^{2} \beta^{3/2}\right). \end{cases}$$
(10)

$$\mathcal{V}_{le}^{e,c}\left[n_{l}(r)\right] \propto -\frac{n_{l}^{0}}{\beta} \int_{V_{\infty}} d\mathbf{r}' \widetilde{C_{le}}\left(\left|\mathbf{r}-\mathbf{r}'\right|, \overline{n_{e}^{0}}\right) \left(\underline{g_{ll}(r')}-1\right).$$
(12)

$$II. \ Z \neq 0 \to Z \equiv 0 \implies n_e \to n_{e,f}^{\text{ext}}(r), \ V_{Ne}^{\text{eff}}(r) \to V_e^{\text{ext,eff}}(r) \tag{13}$$

ГДТС-эксперимент [7, 8]

Соотношение ожидаемого и зафиксированного нейтронного выхода

<i>г</i> _{UH3} ,	Данные разработчиков (ВН	Отношение	
СМ	Эксперименты	Расчёт	«эксп./расч.»
0.00	3.1E+10	1.0E+11	0.3
0.11	2.4E+08, 1.2E+09	1.0E+09	0.2
0.15	7.3E+08, 5.2E+07, 1.5E+08	3.0E+08	1
0.29	1.6E+08, 5.7E+07	1.2E+07	9
0.40	5.0E+07, 1.5E+07	1.5E+06	22
0.60	5.5E+06, 9.5E+06	3.9E+04	192
0.77	4.0E+05	5.0E+03	80
1.00	6.0E+04	1.5E+02	400

Возможные причины несоответствия расчётов и экспериментов:

- ▶ неопределённость в уравнении состояния (УРС) UH₃ и UD₃;
- погрешность расчётов сжатия системы; небрежность сборки (?);
- влияние экранировки ионов дейтерия электронами урана на снижение потенциального барьера ТЯ-реакции в дейтерии (корреляционные эффекты).

Относительный прирост скорости dd-реакции в UD₃

<i>Т</i> , кэВ	$ ho$, г/см 3	R _{dd}	<i>Т</i> , кэВ	<i>ρ</i> , г/см ³	R _{dd}
0.2	50	1.3	0.1	50	1.7
0.2	100	1.5	0.1	100	2.2
0.2	200	1.8	0.1	200	3.1
0.07	50	2.2	0.05	50	2.9
0.07	100	3.2	0.05	100	5.3
0.07	200	5.8	0.05	200	13

Возможен прирост скорости на порядок, но не в 400 раз!

- Вопрос изучался теоретически без привлечения сведений об ионной структуре плазмы в 1971–1972 гг. В. А.Симоненко и И. В. Саниным (ВНИИП), а также В. А. Александровым и В. П. Копышевым (ВНИИЭФ).
- Наши результаты являются почти что средним гармоническим между данными предшественников. Современная оценка ниже данных ВНИИП (1971) и выше, чем результаты ВНИИЭФ (1972).

Роль неопределённости в УРС UH₃ и UD₃

Характерные условия в слое из UD₃ в момент фокусировки (расчёты по методике ВОЛНА [9])

Физическая	УРС		
величина	$\simeq 1970$ г	$\simeq 2020$ г	
$max ho_{UD_3},r/cm^3$	$40 \div 50$	$70 \div 90$	
$T[t(\max ho_{UD_3})], \kappa$ эВ	0.05	$0.35 \div 0.45$	
$\langle \Gamma_{II} \rangle \left[t \left(max \rho_{UD_3} \right) \right]$	$23 \div 30$	$15 \div 17$	
$R_{ m dd}$	$1.5 \div 4.5$	$1.15 \div 1.25$	

- Увеличение скорости dd-реакции (*R_{dd}* > 1) в UD₃, обусловленное учётом корреляционных эффектов, действительно, должно присутствовать.
- ► При использовании старых «холодных» УРС в расчёте реализуется повышенная неидеальность плазмы из-за недооценки уровня температуры в системе.
- Переход к использованию современных широкодиапазонных УРС приводит к тому, что вещество в расчётах успевает разогреться до более высокой температуры. При этом прирост скорости реакции не превосходит 25%.
- Эксперимент с новым УРС описывается хорошо. Учёт R_{dd} избыточен!

10

Циклы горения водорода

Протон-протонный и углерод-азотный циклы (для звёзд главной последовательности)

рр-цикл:

$$2_1^1 H \rightarrow {}^2_1 D + e^- + \nu + 1.44 \text{ M} \Rightarrow B,$$
 (14)

$$_{1}^{2}D + _{1}^{1}H \rightarrow _{2}^{3}He + \gamma + 5.49 \text{ M} \Rightarrow B,$$
 (15)

$$2\frac{3}{2}$$
He $\rightarrow \frac{4}{2}$ He $+ 2\frac{1}{1}$ H $+ 12.85$ M₃B. (16)

Самая медленная реакция — (14) \Rightarrow \Rightarrow Скорость рр-цикла $\propto \exists \uparrow R_{\rm pp}$.

Вещество во окрестности Солнца никогда не участвовало в СNO-цикле [12], который характерен для ядер более массивных звёзд с $m/m_{\odot}\gtrsim 2\div 5$.

CNO-цикл:

$$J_{0}^{2}C + \frac{1}{1}H \rightarrow \frac{13}{7}N + \gamma + 1.95 \text{ M} \Rightarrow B,$$
 (17)

$$^{13}_{7}$$
N $ightarrow$ $^{13}_{6}$ C + e^{+} + ν + 2.22 MəB, (18)

$${}^{13}_{6}\text{C} + {}^{1}_{1}\text{H} \rightarrow {}^{14}_{7}\text{N} + \gamma + 7.54 \text{ M} \Rightarrow \text{B}, \quad (19)$$

$$^{14}_{7}$$
N + $^{1}_{1}$ H $\rightarrow ^{15}_{8}$ O + γ + 7.35 M₃B, (20)

$${}^{15}_{8}{
m O}
ightarrow {}^{15}_{7}{
m N} + e^+ + \gamma + 2.71 \ {
m M} {
m s}{
m B},$$
 (21)

$${}^{15}_{7}\mathrm{N}^{1}_{1}\mathrm{H} \rightarrow {}^{13}_{6}\mathrm{C} + {}^{4}_{2}\mathrm{He} + \gamma + 4.96$$
 M₃B. (22)

Самая медленная реакция — (20) \Rightarrow \Rightarrow Скорость СNO-цикла $\propto \exists \uparrow R_{Np}$.

Поправки $R_{pp/dd}$ и R_{Np} для ядра Солнца X(H) = 0.354 \div 0.784, Y(He) = 0.198 \div 0.626, Z(«металлы») = 0.018 \div 0.020

Зона	Состав	<i>ρ</i> , г/см ³	Т, кэВ	$R_{pp} - 1, \ \%$	$R_{Np} - 1, \%$
Центр Солнца	1	158	1.35	+4.8	+19.8
Граница	2	20	0.7	+4.5	
ядра Солнца	3			+4.5	+18.2

Составы:

- $1. \ H_{0.354}He_{0.626}C_{0.00552}N_{0.00348}O_{0.011}\text{,}$
- $2. \ \ H_{0.708}He_{0.272}C_{0.00552}N_{0.00348}O_{0.011}\text{,}$
- $3. \ H_{0.784}He_{0.198}C_{0.004968}N_{0.003132}O_{0.0099}.$

Указанные результаты для поправок близки по величине к оценкам, полученным в работах [4,5], и не противоречат стандартной модели строения Солнца.

Данные по температуре и плотности взяты из работы [10].

Химический состав задан на основании работы [10] и цитированных в ней источников.

«Экзотика»: ТЯ-горение гелия в красных гигантах [12]

$$\underbrace{{}^{4}_{2}\text{He} + {}^{4}_{2}\text{He}}_{R_{\text{He-He}}} \rightarrow {}^{8}_{4}\text{Be} + \gamma + 7.37 \text{ M} \Rightarrow \text{B}, \quad (23)$$

$$\underbrace{{}_{2}^{4}\text{He} + {}_{4}^{8}\text{Be}}_{2} \rightarrow {}_{6}^{12}\text{C}^{\star} \rightarrow {}_{6}^{12}\text{C} + \gamma + Q. \quad (24)$$

Состав плазмы (массовые доли):

$^{4}_{2}$ He	¹² 6	$^{20}_{10}{ m Ne}$	¹⁶ 80	⁵⁶ Fe
0.878	7E-02	3E-02	2E-02	2E-03

 R_{He-Be}

<i>Т</i> , млн К	<i>Т</i> , кэВ	$ ho$, г/см 3	$\langle \Gamma_{II} \rangle$	$R_{\text{He-He}}$	$R_{\text{He-Be}}$	$R_{ ext{He-He}} imes R_{ ext{He-Be}}$
200	17.23	10 ³	0.04	1.011	1.012	1.023
300	25.85	10 ³	0.03	1.006	1.006	1.012
200	17.23	104	0.09	1.034	1.041	1.076
200	17.23	104	0.06	1.019	1.022	1.041

Рост скоростей реакций на $1 \div 8\%$. Какие имеются неопределённости в величине сечений данных реакций? Сравнимы ли они с оценочным приростом скорости?

Поправка $R_{pp/dd}$ для звёзд предельно малой массы $X(H) = 0.9, Y(He) = 0.09, Z(^{14}_7N) = 0.01$ (звёзды населения-I)

N⁰	mo	Ro	<i>Т_с</i> , кэВ	$ ho_{c}$, г/см ³	$\langle \Gamma_{II} \rangle$	$R_{\rm pp/dd}$
1	0.09	0.14	0.2321	277.0	0.8	2.33
2	0.07	0.15	0.1660	175.2	0.9	2.93
3	0.06	0.16	0.1352	123.7	1.0	3.37
4	0.05	0.18	0.1064	72.41	1.0	3.76
5	0.04	0.18	0.0787	579.3	1.2	5.84

Рост скоростей реакций в 2 ÷ 6 раз.

Вероятно изменение длительности начальной стадии эволюции протозвезды — кратковременного этапа «разгорания» из-за горения дейтерия (стадия Хаяши).

Данные по температуре T_c и плотности ρ_c в центре звезды взяты из работы [11].

Заключение

- 1. На основе модели среднего атома Старретта и Саумона для плазмы с несколькими сортами ионов построена формула, с помощью которой можно оценить изменение скорости ТЯ-реакций из-за ионно-корреляционных эффектов.
- 2. Учёт поправки к скорости dd-реакции в практике расчётно-теоретической проработки ГДТС-систем следует в настоящее время признать избыточным.
- 3. В одномерных расчётах ГДТС-систем определяющее влияние оказал выбор УРС, тогда как при двумерном моделировании может проявиться существенная роль асимметрии и перемешивания материалов в слоях системы.
- Прирост скорости ТЯ-реакций для рр-цикла и гиптотетического СNО-цикла [10] в центре Солнца (1.4 кэВ, 160 г/см³) и на границе его ядра (0.7 кэВ, 20 г/см³) для плазмы стандартного состава [10] составляет:

$$R_{\rm pp} \simeq 1.05; \qquad R_{\rm CNO} \simeq 1.20.$$
 (25)

Результаты близки по величине к оценкам, полученным в работах [4,5], и не противоречат стандартной модели строения Солнца.

Заключение

5. В недрах коричневых карликов [11] — протозвёздных объектов с предельно малой массой (около $0.04 \div 0.09 M_{\odot}$) — прирост скоростей pp- и dd-реакций весьма существенен. При $T \le 0.4$ кэВ и 60 г/см³ $\le \rho \le 600$ г/см³ он составляет:

$$R_{\rm dd} \simeq R_{\rm pp} \sim 2 \div 6. \tag{26}$$

- 6. Следовательно, становится более вероятным протекание реакций синтеза в менее массивных астрофизических объектах менее $\simeq 0.1 M_{\odot}$, чем это считается в настоящее время.
- Учёт поправок открывает возможность уточнения сценария развития протозвезды, так как длительность начального этапа разогрева недр протозвезды за счёт реакций синтеза [12] — стадии горения дейтерия (стадии Хаяши) может существенно сократиться.
- 8. Таким образом, последовательный учёт изменения скоростей термоядерных реакций в неидеальной плазме с сильными ионными корреляциями необходим для уточнения теоретических моделей строения и эволюции звёзд.

Список использованных источников

- Starrett C. E., Saumon D., Daligault J., Hamel S. Integral equation model for warm and hot dense mixtures // Phys. Rev. E. — 2014. — Vol. 90. — P. 033110.
 Starrett C. E., Saumon D. Electronic and ionic structures of warm and hot dense matter // Phys. Rev. E. — 2013. — Vol. 87. — P. 013104.
- Фальков А. Л. Структурные и теплофизические свойства плотного ионизованного вещества с учётом кулоновских корреляций ионов. Диссертация к. ф. — м. н. — Москва, Снежинск: РФЯЦ-ВНИИТФ, 2024. — 175 с.
- Крокстон К. Физика жидкого состояния. Статистическое введение. / Под ред. А. И. Осипова. — М.: Изд-во «Мир», 1978. — 400 с.
- 4. Salpeter E. E. // Aust. J. Phys. 1954. Vol. 7. P. 373.
- Bahcall J. N., Brown L. S., Gruzinov A., Sawyer R. F. The Salpeter plasma correction for solar fusion reactions // A&A. — 2002. — Vol. 383. — P. 291-295.
- 6. Цытович В. Н. Коллективные плазменные поправки к скоростям термоядерных реакций в плотной плазме // ЖЭТФ. 2002. Т. 121, № 3. С. 1080 1091.

Список использованных источников

- Александров В. А., Анисимов А. Н., Аринин А. Н. и др. Возбуждение термоядерной реакции в фокусе прецизионного сферического заряда взрывчатого вещества [Текст] // ВАНТ. Сер. Математическое моделирование физических процессов. — 1992. — Вып. 4. — С. 92 — 93.
- Александров В. А., Горбачёв В. М., Михайлов А. Л. и др. Радиальное распределение интенсивности термоядерной реакции в мишени UD₃, помещённой в фокус сферического заряда ВВ // Труды РФЯЦ-ВНИИЭФ. Научно-исследовательское издание. Саров: ФГУП «РФЯЦ-ВНИИЭФ», выпуск 8, 2005. 355 с.: ил., С. 102 107.
- Куропатенко В. Ф., Коваленко Г. В., Кузнецова В. И. и др. Комплекс программ «Волна» и неоднородный разностный метод расчёт неустановившихся движений сжимаемых плотных сред. Часть І. Неоднородный разностный метод [Текст] // ВАНТ. Сер. Математическое моделирование физических процессов. — 1989. — Вып. 2. — С. 9 — 18.

Список использованных источников

- 10. Гибсон Э. Спокойное Солнце. / Под ред. Э. В. Кононовича. М.: Изд-во «Мир», 1977. 408 с.
- Kumar S. S. Models for stars of very low mass. NASA technical note TN D-1907 Washington, D. C.: NASA, 1963. — 25 p.
- 12. Ишханов Б. С., Капитонов И. М., Тутынь И. А. Нуклеосинтез во Вселенной. Учебное пособие. — М.: Книжный дом «ЛИБРОКОМ», 2017. — 208 с.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●